top of page
Research interests: Privacy enhancing technologies, security protocols, Post-quantum Cryptography, Wireless communications, Physical layer security, Number Theory, Discrete geometry.
Screen Shot 2020-07-20 at 1.34.58.png
          My Erdös number is 2



  1. Split keys for station-to-station (STS) protocolsAkman, G., Damir, M. T., Ginzboorg, P., Sovio, S. & Niemi, V., 22 Sep 2023, In: Journal of surveillance, security and safety. 4, 3, p. 62-93 32 p.

  2. Privacy-Enhanced AKMA for Multi-Access Edge Computing Mobility, Akman, G., Ginzboorg, P., Damir, M. T. & Niemi, V, Computers. p. 41 , 2023

  3.  Location Privacy, 5G AKA, and Enhancements, Damir, M. T. & Niemi, V, The 27th Nordic Conference on Secure IT Systems; NordSec 2022, Cham: Springer, p. 40–57; vol. 13700

  4.  A Beyond-5G Authentication and Key Agreement Protocol, Damir, M. T. & Niemi, V , 16th International Conference on Network and System Security (NSS 2022) , Cham: Springer, p. 249–264

  5.  Lightweight Privacy-Preserving Ride-Sharing Protocols for Autonomous Cars, Ramezanian, S., Akman, G., Damir, M. T. & Niemi, V. , 8 Dec 2022, Proceedings of the 6th ACM Computer Science in Cars Symposium (CSCS ’22)

  6.  On Post-Quantum Identification in 5G, Damir, M. T. & Niemi, V. , 16 May 2022, WiSec ’22: Proceedings of the 15th ACM Conference on Security and Privacy in Wireless and Mobile Networks., ACM Digital library, p. 292–294

  7. Bases of minimal vectors in Tame lattices , M. T. Damir, G. Mantilla-Soler,, Acta Arithmetica, 205, p. 265-285 21 p

  8. (Preprint) Even Unimodular Lattices from Quaternion Algebras. M. T. Damir, L. Amoros, C. Hollanti.

  9. -Well-Rounded Lattices: Towards Optimal Coset Codes for Gaussian and Fading Wiretap Channels, A. Karrila, M. T. Damir, L. Amoros, O. Gnilke, D. Karpuk, C. Hollanti. IEEE Transactions on Information Theory, 67(6), 3645–3663. doi:10.1109/tit.2021.3059749

  10. An Approximation of Theta Functions with Applications to Communications. M. T. Damir, A. Barreal, C. Hollanti, R. Freij-Hollanti , SIAM Journal on Applied Algebra and Geometry.

  11. - Canonical basis Twists of Ideal Lattices from Real Quadratic Fields, M.T Damir, Lenny Fukshansky, Houston Journal of Mathematics, August 2019.

  12. Well-Rounded Twists of Ideal Lattices from Real Quadratic Fields, M.T Damir, D. Karpuk, Journal of Number Theory, 196 (March 2019), 168–196 .

  13. -Analysis of Some Well-Rounded Lattices in Wiretap Channels, M. T. Damir, O. Gnilke, L. Amoros, and C. Hollanti, IEEE SPAWC conference 2018.

  14. -Fibonacci numbers with prime sums of complimentary divisors, M.T.Damir, F.Luca, A.Tall and B.Faye, Integers electronic journal of combinatorial number theory, Vol 14, A5.

  15. -  Members of Lucas sequences whose Euler function is a power of 2, M.T.Damir, F.Luca, A.Tall and B.Faye, Fibonacci Quarterly, Vol 52, A3.

bottom of page