Research interests: Number Theory, Lattices, Post-quantum Cryptography, Wireless communications, Physical layer security.
Screen%2520Shot%25202020-07-20%2520at%25
Screen Shot 2020-07-20 at 1.34.58.png

          My Erdös number is 2

  1.  (Preprint) Bases of Minimal Vectors in Tame Lattices. M. T. Damir, Guillermo Mantilla-Soler.  

  2. (Preprint) Even Unimodular Lattices from Quaternion Algebras. M. T. Damir, L. Amoros, C. Hollanti.

  3. -Well-Rounded Lattices: Towards Optimal Coset Codes for Gaussian and Fading Wiretap Channels, A. Karrila, M. T. Damir, L. Amoros, O. Gnilke, D. Karpuk, C. Hollanti. IEEE Transactions on Information Theory, 67(6), 3645–3663. doi:10.1109/tit.2021.3059749

  4. An Approximation of Theta Functions with Applications to Communications. M. T. Damir, A. Barreal, C. Hollanti, R. Freij-Hollanti , SIAM Journal on Applied Algebra and Geometry.

  5. - Canonical basis Twists of Ideal Lattices from Real Quadratic Fields, M.T Damir, Lenny Fukshansky, Houston Journal of Mathematics, August 2019.

  6. Well-Rounded Twists of Ideal Lattices from Real Quadratic Fields, M.T Damir, D. Karpuk, Journal of Number Theory, 196 (March 2019), 168–196 .

  7. -Analysis of Some Well-Rounded Lattices in Wiretap Channels, M. T. Damir, O. Gnilke, L. Amoros, and C. Hollanti, IEEE SPAWC conference 2018.

  8. -January 2014:  Fibonacci numbers with prime sums of complimentary divisors, M.T.Damir, F.Luca, A.Tall and B.Faye, Integers electronic journal of combinatorial number theory, Vol 14, A5.

  9. - February 2014: Members of Lucas sequences whose Euler function is a power of 2, M.T.Damir, F.Luca, A.Tall and B.Faye, Fibonacci Quarterly, Vol 52, A3.